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Abstract 

Integer Programming (IP), also known as Discrete Optimisation, is a way of modelling a very wide 
range of problems involving indivisibilities (eg. Yes/No investment decisions) and non-convexities 
(eg. economies of scale and fixed cost allocation). Such problems arise in many areas which will be 
mentioned. However IP demands ingenuity in both building models and solving them. A lot is still 
not properly understood. 

This paper investigates the question. ‘Is IP like Linear Programming (LP)?’ The mathematical and 
economic properties of IP will be contrasted with LP. It will be suggested that the mathematics and 
economics of IP are still not properly understood. Many of the results which apply to LP do not 
apply to IP. It will be asserted that this lack of understanding reveals inadequacies in both the 
mathematics and economics. 

It will be shown that in many (but not all) situations the rounding of an LP solution does not produce 
satisfactory (feasible or optimal) solutions to an IP. A topical example will be given of political 
apportionment leading to the Alabama Paradox.  

IP is essentially concerned with the intersection of two structures: 

(i) Linear inequalities giving rise to polytopes. 

(ii) Lattices of integer points. 

Mathematical and computational methods and results exist for both these structures on their own. 
However mixing them is like mixing oil and water. Problems arise in both the computation of 
optimal solutions and the economic interpretation of the results. It will be suggested that the 
appropriate mathematical structure is an integer monoid. This structure will be explained. Connected 
with this structure are Chvátal functions which are made up of non-negative combinations of the 
arguments together with the (nested) integer round-up operation. The use of these functions, in place 
of the conventional non-negative linear combinations of LP allows one to capture many of the 
classical LP, results eg. The Weyl-Minkowski theorems, ‘pricing’ of indivisible resources and the 
closing of the ‘duality gap’ leading to the optimal IP solution. It will be shown how optimal Chvátal 
functions can be  interpretated as the (non-marginal) valuation of indivisible resources. However a 
major problem remains as to how to represent them in a transparent and compact way. 

* This survey paper was given at a workshop, held at the London School of Economics on June 30 
2009, to honour Professor Williams’ career and retirement. 
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1. INTRODUCTION 

The general (mixed) Integer Programme (IP) can be written: 

Maximise/Minimise   k
k

kj
j

j ydxc ∑∑ +

subject to       ik
k

ikj
j

ji byexa <=>+∑∑  for all i 

0>=jx for all j , >= 0 and integer for all k ky

Frequently (but not always) the integer variables are restricted to values 0 and 1 representing 
(indivisible) Yes/No decisions. In such cases we can view such models as Logical statements about a 
series of Linear Programmes (LPs). 0-1 IPs can be interpreted as Disjunctions of LPs. The 
relationship between Logic and IP is explored by Hooker[15] and by Williams[32]. 

However we give little attention to this aspect of IP in this paper. Instead we concentrate on the 
general case. 

There are a vast number of actual and potential applications of IP. A survey of many practical 
applications is given in Appa, Pitsoulis and Williams[1]. Williams[31] concentrates on the modelling 
of many practical applications. We summarise the major applications below. 

1. Extensions of LPs, also to model investment and scheduling decisions in eg Manufacturing, 
Distribution, Petroleum, Gas and Chemicals give rise to mixed IPs. 

2. Non-convex, non-linear optimisation problems can only be satisfactorily solved to (global) 
optimality using IP methods. 

3. Power system loading problems which take account of the fixed costs of switching on 
generators. 

4. Distribution problems which involve routing decisions as well as the location of 
manufacturing and storage plants. 

5. Telecommunications involving the location of eg concentrators as well as bandwidth 
allocation. 

6. Medical radiation problems involving the concentration and direction of x-rays. 
7. Statistical design involving the creation of eg Latin Squares. 
8. Molecular biology such as eg genome sequencing where fragments of DNA have to be 

ordered into the most likely sequence. 
9. Archaeological seriation where the most likely sequence of sites over time is sought. 

The latter two applications are examples of the famous Travelling Salesman Problem (see [18] 
although these two applications are not discussed there). 

10. Minimal size logical statements which can be used in eg medical diagnosis and credit 
scoring. 

11. Computer design where it is desired to locate components with possible objectives of eg 
minimising wire length (to optimise speed), cross-overs or number of components. 

12. Aircraft scheduling ie deciding which aircraft fly on which routes. 



13. Aircrew scheduling ie deciding which crews fly on which routes to eg minimise total 
number of crews or total cost. Constraints take account of physical incompatibilities (ie 
limitations of time and place) as well as total work time and rest breaks. 

It should be emphasised that, while major advances have been made in both methods of 
modelling and computer systems (see eg Bixby et al [3]) the solving of large examples of some 
applications remain more aspirations than standard realisations. This is in contrast to LP where 
models with hundreds of millions of variables and constraints (these arise in LP formulations of 
Stochastic Programmes, see eg [13]) can be solved. 

The reasons for this contrast between LP and IP is one of the major themes of this paper. 

2. IP AND ROUNDING 

A common reaction of non-specialists when thinking about IP is to consider rounding the 
optimal LP solution. There are a few examples where rounding can be used (eg the Satisfiability 
Problem with Horn Clauses in Logic, see eg Williams[32]). The following small example 
demonstrates why this may be unhelpful. 

Consider the LP 
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The corresponding IP is 

Minimise                                                 with optimal solution 2x

subject to                               
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                  and integer 

There is no obvious way of generally moving from the LP solution to the IP solution. 

A number of other contrasts between the LP and IP solutions are worth noting. 

(i) The LP has 3 variables positive (  and the slack in the 221, xx nd constraint) in the optimal 
solution. This is a result of the LP having 3 constraints (apart from the non-negativities).  



(ii) The LP has 2 constraints binding (constraints 1 and 3) in the sense that if either or both of 
these constraints is removed the optimal solution alters. If constraint 2 is removed the solution is 
unaltered. Hence constraint 2 has no economic value. This is a result of the LP having 2 
structural variables (the stated variables-not the slack or surplus variables in the constraints). The 
optimal LP solution is at X, the intersection of constraints 1 and 3. If either of these constraints is 
removed the optimal solution moves to B or C respectively.  

      These results are easily seen in figure 1. 
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                                 Figure1. LP and IP Optima 

But  

(iii) The IP optimal solution at A (x1 = 2, x2 = 9) has 4 variables positive (  and the slacks in 
the 2

21, xx
nd and 3rd constraints). There is no simple relationship between this and the size of the IP. 

(iv) The IP has 3 constraints binding (constraints 1, 2 and 3). Again there is no simple 
relationship with the size of the IP. 

These results are seen in figures 2, 3 and 4.  

If constraint 1 is removed the optimal IP solution moves to B.  
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 Figure 2. Optimal IP Solution when Constraint 1 Removed 

 

                                

If constraint 2 is removed the optimal IP solution moves to D at (x1=8 ,x2=3). (Constraint 2 is 
not redundant).  
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Figure3. Optimal IP Solution when Constraint 2 Removed 

 

 

                                 

If constraint 3 is removed the optimal IP solution moves to C.  
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      Figure 4. Optimal IP Solution when Constraint 3 Removed 

 

These relationships between LP and IP (or lack of them) are examined, in general, in section 3. 

Since the altering of any of the constraints in this IP example (although not all satisfied as 
equalities) alters the optimal objective value they all have economic value. This cannot be 
measured by marginal values as is done by LP dual values. However we seek an analogous IP 
valuation. This is done in section 4. 

Before considering these aspects we further demonstrate the inadequacies of rounding by a 
practical example. 

2.1 The Alabama Paradox 

This is concerned with political apportionment. The problem arose in the USA in the 18th century 
when the number of members of the House of Representatives was increased from 299 to 300, as 
a result of the method used to allocate representatives to individual states, based on their 
populations. The number of representatives allocated to Alabama dropped from 8 to 7 (although 
there had been no changes in populations). A small example demonstrates the method used and 
why it can lead to such a paradoxical result. 



Suppose we have three states with the populations given and 10 representatives to be allocated. 

 

State              Population       Fractional Allocation        Rounded Allocation   

A                     621k                 4.41                                      4 

B                     587k                 4.17                                      4 

C                     201k                 1.43                                      2 

 

The fractional allocations are the proportions of the populations multiplied by 10. The rounded 
(integer) allocations are obtained by allocating the integer part and then allocating the total 
shortfall of representatives in decreasing order of fractional component. In this case, after 
allocating 4, 4 and 1 representatives respectively the remaining representative is allocated to C, 
having the largest fractional component. 

If, however, we increase the total number of representatives to 11 the following allocation 
results. 

 

State              Population       Fractional Allocation        Rounded Allocation   

A                     621k                 4.81                                      5 

B                     587k                 4.58                                      5 

C                     201k                 1.57                                      1 

After allocating 9 of the 11 representatives the remaining 2 are allocated to A and B respectively, 
having the largest fractional components. 

The net effect is that although the total number of representatives  has increased C’s 
representation has decreased. This paradox and different methods of apportionment are discussed 
by Balinski and Young [2]. 

The reason this example is topical is that it could equally well be applied to allocating seats to 
political parties in a proportional representation system. In the 2009 elections, for the European 
Parliament, Britain was divided into 12 regions (Northern Ireland used a different system) and 
electors, in each region, voted for a party, not an individual. Representatives were allocated to 
parties, depending on how many votes they got. If it were done in the same manner as that above 
the Alabama paradox could result (the method is said to be ‘non-monotonic’). More seriously the 
‘fairness’ of the method could be questioned. The method actually used is the D’Hondt system 
(named after the Belgian mathematician D’Hondt, see [9]). 

The D’Hondt system proceeds as follows: 



Allocate the first representative to the state (or party) with the most votes (or population). Then, 
notionally, divide this state’s (party’s) votes (or population) by  2 and repeat the procedure. 
When a state (or party) has been allocated r representatives divide the original votes (or 
population) by r+1. Continue in this manner until all representatives have been allocated. After 
the Alabama paradox was revealed, the USA system was altered to the Jefferson method which 
turns out to be equivalent to the D’Hondt method. However the rationale behind both systems is, 
at first sight, obscure. 

The reason for using this example in this paper is to formulate it as an IP. One of the merits of  
building an LP or an IP model, to solve a problem, is that it forces one to specify  objectives. In 
the case of political apportionment one would probably specify an objective of fairness. If one 
defines fairness in a Rawlsian sense (see Rawls [20]) then one can seek to Minimise the 
Maximum ratio of number representatives  to votes (or population).  

In order to do this we define integer variables xi  which give the number of representatives which 
should be allocated to state (or party) i. 

If state (party) i has population (vote) vi then we wish to choose xi so as to 

                                   Minimise Maximumi (xi/vi) 

                                    subject to = Total number of representatives ∑
i

ix

ie make the maximum disparity in ratio of representatives to population (votes) as small as 
possible, in order to seek to equalise them. (It makes no sense to maximise the minimum ratio, in 
the political case, since this is likely to be 0 if ‘eccentric’ parties compete). 

The above model can easily be converted into a conventional (mixed) IP 

                                    Minimise y 

                                    subject to (xi/vi) <= y  for all i 

                                                    ∑ = Total number of representatives 
i

ix

where y is a continuous variable. 

If this model is applied to the above example the following solution results, if there are 10 
representatives. 

State              Population       Fractional Allocation        IP Model Allocation  

A                     621k                 4.41                                      5 

B                     587k                 4.17                                      4 

C                     201k                 1.43                                     1 



If one solves this model as an LP (dropping the integrality conditions to give the ‘LP 
Relaxation’) one obtains the fractional allocation (where all ratios are equal). 

To see that the solution above is ‘better’ (‘fairer’) than the rounded solution (ie rounding the LP 
solution) one can observe that the maximum ratio, in the solution above, is 5/621 which is 
smaller than the maximum ratio of  2/201 in the rounded solution. Indeed 5/621 is the minimum 
possible. 

The above solution is that which would be obtained by the D’Hondt (Jefferson) method. It can be 
shown that this will always be the case. Hence these methods can be justified by the use of the 
above (‘fair’) IP formulation. In fact (although not usually explained as such) the D’Hondt 
method is an iterative method of obtaining the Minimax solution). 

It is interesting to note what the result would have been if the 2009 European elections (see [10]) 
had used rounding rather than the fairer D’Hondt (IP) system. The results (in representatives) 
would have been very different. It would have resulted in (over Britain as a whole) 

 

Party                                            D’Hondt Solution      Rounded Solution 

Conservative                                             25                             21 

United Kingdom Independence                13                              9 

Labour                                                       13                             13 

Liberal Democrats                                     11                             10 

British National                                           2                               7 

Green                                                           2                               6 

Scottish Nationalist                                     2                               2 

Plaid Cymru                                                1                               1 

 

3. MATHEMATICAL DIFFERENCES BETWEEN IP AND LP 

We list below some of the main differences between the structure of the solutions to LPs and IPs. The 
differences in Computational Complexity between the two classes of models has been intensely 
studied (see, for example Nemhauser and Wolsey [19]) The results below also suggest why IPs are 
usually much more difficult to solve than corresponding sized LPs. A standard reference for the theory 
of LP is Dantzig [7]. 

Some of these results were illustrated by the 2-variable example in the previous section. 

 



1. If an LP (in standard form), with m constraints (apart from the non-negativities), has an 
optimal          solution then among the optimal solutions will be one with at most m variables 
(structurals and  logicals) positive. 

Such a solution is usually known as a basic solution, since the columns of the coefficient matrix 
form a vector space of m-tuples. Such a vector space can have a dimension of at most m. Basic 
solutions correspond to vertices of the associated polytope (see figure 1). 

This result can be exploited in methods such as the Simplex algorithm which restrict their search to 
the (finite number of) basic solutions. 

For IP there is no such corresponding result. Every variable could be positive, irrespective of 
the size of m. This is demonstrated by the following class of IPs with 1 constraint (known as 
Knapsack problems). 

Take n prime numbers p1, p2 ,  ... ,pn . Define P = p1p2 … pn   ie their product. Define Pi = P/pi . 

Consider the IP 

Maximise    i
i

i xP∑

subject to   <= i
i

i xP∑ ∑
i

iP  

    xi  >= 0 and integer for all i 

A non-negative combination of any proper subset of the Pi  must be a multiple of at least one of the 
pi . But the right-hand-side cannot be a multiple of any of the pi since dividing it by any pi leaves a 
positive remainder. Hence the constraint cannot be satisfied as equality by any other than the 
solution xi = 1 for all i . This is therefore the unique optimal solution showing all variables must be 
positive. 

2.  For an LP, with n structural variables,  at most n constraints (including non-negativity 
constraints) will be binding (in the sense that removing them would cause the optimal objective 
value to change). 

This result is equivalent to 1 above, for LP, since positive dual values correspond to  binding 
constraints.  

For an IP, with n structural variables,  at most 2n -1 constraints (non-negativity constraints) 
will be binding. This result is due to Scarf [24]. 

3. There are valuations on the constraints of an LP model which close the duality gap ie there is 

a (symmetric) LP (dual) model. The binding constraints have positive  dual valuations. These dual 
values (when unique) represent the effect, on the optimal objective value, of marginal changes in 
the right-hand-sides of the constraints and therefore have considerable economic importance in 
many applications. 



      For an IP model there are no corresponding valuations which close the duality gap.  However there 
are Chvatál functions  (see Chvátal [6]) , discussed in section 5 ) which close the duality gap. 

      There is no obviously symmetric dual model which gives rise to the optimal Chvátal function. 

  

      The results above suggest the, rather unsatisfactory, understanding of the structure of solutions of 
(pure) IPs compared with LPs. They suggest a lack of understanding of the mathematical nature of IP. 
Misconceptions exist regarding structural properties of IP (and LP) such as those above. These are 
well covered by Greenberg [14]. 

 

4. Lattices within Polytopes 

One of the problems with understanding the mathematical nature of IP is that there are essentially two 
structures involved. The conventional LP constraints give rise to polytopes, but within these polytopes 
the integrality conditions give rise to lattices (this is generally the integer lattice, but reformulations 
can result in other lattices). For LP the, well known, structural results discussed above exist. 
Analogous results exist for lattices. When, however, the two structures are combined many of these 
structural results are lost.  

We consider the model below. 
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The first four constraints define a polytope and the latter three constraints a lattice. 

In order to illustrate a duality result for both structures independently we will firstly ask what is the 
strongest statement about the objective function implied by the first four constraints. This may be 
obtained from the optimal dual values of ⅓, ⅔ 0, 0 on the constraints. Adding them together in these 
multiples gives  2x1 +x2 <= 30⅔ , which is the optimal LP objective value.  

The strongest statement about the objective function implied by the latter three constraints can also 
be obtained from multipliers on the constraints. Taking optimal multipliers of 3, 0, 4 on the 
constraints and adding them together gives 2x1 +13x2 ≡ 0(mod 4). Since 13=1(mod 4) we have 2x1 
+x2 ≡0(mod4). 4 is the largest such modulus implied. This duality result for congruences, presented 
in an analogous fashion to that for LP, is given by Williams [26] and [28]. It is sometimes known as 



the integer form of Farkas’ Lemma (see Schrijver [25]) and is equivalent to a result of Kronecker 
[17]. 

Taken together the two deductions, by means of multipliers, can only allow us to deduce that 2x1 +x2 
<= 28. But figure 5 demonstrates that the optimal objective value, subject to the two types of 
constraints,  is 24 since the line 2x1 +x2 =28 intersects no lattice points within the polytope.  

 

0 6 12

0

4

8

y

x

Objective = 30.67

Objective = 28

Objective = 24

 

                    Figure 5.   A  Lattice within a Polytope 

Technically all we can deduce from the duality result for the congruences, taken together with the 
duality result for the LP Relaxation, is a rank 1 cut (see eg Nemhauser and Wolsey [19]). The 
combining of the two structures demands  more sophisticated analysis (for which there are few 
structural results). 

It is worth noting that the solution of the inequality system can be done by the Simplex algorithm 
(see eg Dantzig [7]) and the ‘solution’ of the congruence system can be done by the Euclidean 
algorithm (see Williams [26]). These are possibly the two most powerful algorithms in 
mathematics. 

A polytope can be represented as the sum of a polyhedron (a closed polytope) and a cone. A lattice 
within a polyhedron is obviously represented by a finite number of points. However lattices within 



cones give rise to an infinite number of points. They do, however, still have a structure. This 
structure is an integer monoid . We contend that this structure is fundamental to understanding IP.  

An integer monoid consists of the non-negative integer combinations of a finite set of generating 
vectors (its Hilbert basis). Some integer monoids are polyhedral and some are non-polyhedral. 
Polyhedral integer monoids are those which are represented by lattice points within a cone. This is 
illustrated in figure 6. We consider the cone defined by the inequalities 

                          -2x + 7y >= 0 

                             x – 3y >= 0 

and the lattice points with integer coordinates within this cone. 
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Figure 6.   A Polyhedral Monoid and its Projection into a Non-Polyhedral 
                 Monoid 
 
 

The lattice within the cone is the polyhedral monoid generated by the vectors   and  . ⎟⎟
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An example of a non-polyhedral monoid is given by the projection of the above  monoid onto the x 
axis. This monoid is generated by the integers 3 and 7. Clearly this monoid is only a subset of the 
integer points in the cone x>=0. 
 



Projection converts LPs into LPs, in a lower dimension, and offers a method  of solving LPs (see 
Williams [31]) as well as deriving the dual. For IP this is not the case. We need to optimise over a 
monoid. However it is always possible to lift a non-polyhedral integer monoid into a polyhedral one 
in a higher dimension (see Kirby and Williams [16]). 
 
Integer monoids have a structure, although it is not obvious how to exploit this in solving and 
understanding the structure of IPs. For example  1-dimensional integer monoids, where the 
generators have a greatest common divisor of 1, eventually generate all integers. The last integer 
which cannot be generated is known as the Frobenius number (see Rödseth [22]). It can be shown 
that an integer monoid generated by (coprime) integers a and b has Frobenius number ab-(a+b). The 
first part of the monoid, up to and including, the Frobenius number, is known as the ‘head’ and the 
rest, the ‘tail’. It can also be shown that the head is the ‘mirror image’ of itself when reversed, in the 
sense that the non-representable values mirror the representable ones. This is demonstrated by figure 
7, where the projected monoid has been reversed at the bottom with 0 corresponding to the 
Frobenius number (11). 
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Figure 7.  The Head of a Monoid Mirroring its Reversal 
 
 
Despite their obvious structure, this has not, so far, been exploited in any algorithmic, or 
interpretative way with regard to IP. 
 
 
5. Duality in LP and IP 
 



As discussed above LPs have well defined duals which are of great mathematical, structural and 
economic importance. In fact a number of Nobel prizes for Economics have resulted from the 
exploitation of this concept in various contexts (eg Leontief , Samuelson, Koopmans, Kantorovitch), 
(see eg Dorfman, Samuelson and Solow [8]). 
 
Valuations on discrete resources would have a number of applications. This question was first 
addressed by Gomory and Baumol [12].  In particular an ‘unsolved’ problem of accountancy is how 
to allocate fixed costs in an allocatively efficient fashion (see eg Butler and Williams [5]). We 
illustrate this by a model for the facilities location problem. 
 
Let y=0 or 1 depending on whether a facility should, or should not, be built, at a fixed cost of f. 
 
xi is the level of service to be provided to consumer i (up to level Di) at a profit of pi per unit 
provided. 
 
A (mixed) IP model is 
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A dual value of vi  on  xi – Diy <= 0 would result in 
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ie  an allocation of the fixed cost back to the consumers. 
 
 
No obvious corresponding IP result is known to match LP duality.. However we construct what we 
regard as the most satisfactory structure for (pure) IPs by means of the value function of an IP. The 
value function of an LP or an IP is the optimal objective value as a function of the right-hand-side 
values. For an LP this can be constructed from the duality theorem using knowledge of all the 
vertices of the dual model. We illustrate this, using the numerical example from section 2, with 
general right-hand-side values. This is 
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                                   subject to   

0,

25
2

21

321

221

121

>=
>=+−
<=+
>=+

xx
bxx
bxx

bxx

      

The  value function is 



 

                                Max (5b1-2b2 , ⅓b1+⅔b3 , b3) 

The LP is feasible so long as  

 

                                Max (2b1-b2 , -b2 , -b2+2b3) <= 0 

 

This latter expression is known as the consistency tester. 

The coefficients in the value function terms ( (5,-2,0), (⅓,0, ⅔), (0,0,1) ) represent the vertices of 
the dual polytope. This is because any right-hand-side for the original model corresponds to a set 
of objective coefficients in the dual model. Multiplying these by each vertex in the dual model, 
and taking the maximum, gives, by the LP duality theorem, the common optimal value for both 
models.  

The coefficients in the consistency tester terms ( (2,-1,0), (0,-2,0), (0,-1,2) ) represent the 
extreme rays of the dual polytope.  This is because if they are multiplied by any objective 
coefficients of the dual model to make it  unbounded, the corresponding primal model with these 
coefficients, as right-hand-side, must be infeasible.  

We can easily check that this LP is feasible with the values for the example in section 2, b1 = 13, 
b2 = 30, b3 = 5 and that the optimal objective value is 

Max (5, 7⅔ , 5) = 7⅔ 

In order to try to capture the reliance of the LP value function on the duality results we consider 
the corresponding  value function for the (pure) IP (see Blair and Jeroslow [4]). 
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The  value function is 
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represents the integer round-up operation. 

The consistency tester is (in this instance) the same as for the LP. 

The above expression is known as a Gomory function since it reflects Gomory’s algorithm for 
PIPs (see Gomory [11]). The component terms, involving linear combinations together with (in 
general nested) integer round-up operations, are known as Chvátal functions after Chvátal [6]. 

Using the values b1 = 13, b2 = 30, b3 = 5 the optimal objective value is 

Max(5, 8, 5, 9) = 9. 

Hence the Chvátal function  b1 + 2
┌ 1/5 (  -b2 +2

┌
⅓(b1 + 2b3  )

 ┐
) 
┐

 is that which gives rise to the 
optimal objective value. This confirms the observation illustrated in figures 2, 3 and 4 that all 
three constraints are binding and should therefore be given an ‘economic valuation’. This aspect 
is discussed by Williams [29].   But the Chvátal function above cannot be reduced (as in the LP 
case) to a linear expression with coefficients corresponding to dual (marginal) values. Nor does 
the ‘relaxation’ of this Chvátal function (dropping the round-up operation and collecting terms) 
correspond to a vertex of the LP polytope. 

In general (for a minimisation with >= constraints) the optimal Chvátal function will consist of a 
non-negative linear combination of the variables,  together with nested integer round up 
operations. If it is convenient to include = and <= constraints then these can give rise to negative 
coefficients at the innermost level (as illustrated by the coefficient of  b2 in the above example). 

A Gomory function is a maximisation of a finite set of Chvátal functions. Wolsey [33] refers to 
this as the ‘b-hull of a PIP’. 

For maximisations subject to <= constraints we would redefine Chvátal functions using the 
integer round-down operation. 

Chvátal functions are the IP analogue of the linear functions (using dual values as coefficients) 
for LP. 

Calculating optimal Chvátal functions is computationally difficult (unlike calculating optimal 
dual values in the LP case). If it turns out that, for an n variable PIP, only those constraints 
binding at the LP optimum are needed (known as the IP over the optimal LP cone) then the value 
function reduces to a Chvátal function. The calculation of this Chvátal function is 
straightforward and is discussed by Williams [27]. 

Another problem is that of representing Chvátal functions in a transparent and unique way ( 
‘normal form’). In contrast, for the LP case, all that is needed is the vector of dual values. A 
useful representation for the PIP case is as a directed tree. Each arc and each node has an 
associated number. Numbers on arcs represent multiples in which associated terms are added and 
numbers on nodes represent division together with integer round-up. We illustrate the tree 

associated with the Chvátal function b1 + 2
┌ 1/5 (  -b2 +2

┌
⅓(b1 + 2b3  )

 ┐
) 
┐

 in figure 8. 
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Figure 8. Tree Representation of a Chvátal Function 

There is no guarantee that such a representation will be unique. Indeed it is sometimes possible 
to remove unnecessary rounding operations in Chvátal functions. This is explored, in a limited 
way, by Rhodes and Williams [21]. 

For example it is easy to verify, for integer n 

┌ 2/7 

┌ 7/3n 
 ┐

 
┐  

≡  
┌ 2/3n 

┐ 

But

┌ 7/3

┌ 2/7 n 
 ┐

 
┐ 
≠  
┌ 2/3n 

┐  
 eg n = 1 

 



┌ 1/3

┌ 5/6n 
 ┐

 
┐  

≡  
┌ 5/18n 

┐ 

But

┌ 2/3

┌ 5/6n 
 ┐

 
┐ 
≠  
┌ 5/9n 

┐  
 eg n = 5 

 

Two other properties of Chvátal functions are worth remarking on. 

 
(i) They obey the triangle inequality (when using integer round-up) since 

              
┌

 a  
┐ 

+
  ┌ b  

┐ 
>=

 ┌ a + b 
┐ 

 

            Hence they are of use in designing Discrete Metrics (see Rhodes and Williams [21]). 

 

(ii) They are  Shift Periodic  ie if f is a Chvátal function 

            f(x
1

 + a
1

, x
2
 +a

2 , …, x
n +a

n
) = f(x

1
, x

2
, …, x

n
) + b  

            for some a
i  

and b, 

This is illustrated in figure 9 for the Chvátal function of one variable 

┌ 1/2  (x + 3
┌ 1/9x 

 ┐
 )
┐   

which is (9, 6) shift periodic, ie  f(x + 9) = f(x) +6. 
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                 Figure 9.  Shift Periodicity of a Chvátal Function 

It can be seen that this function is discontinuous, with an average gradient of 2/3, but ‘repeats 
itself’ with a period of 9. 

Another ‘unification’ which is provided by Chvátal functions concerns the Weyl-Minkowski 
theorems (see eg Schriver [25]). These give the ‘dual’ results that a polytope can alternatively be 
described by linear inequalities or as a convex combination of its vertices together with a non-
negative combination of its extreme rays. 

This extends to polyhedral monoids which can alternatively be described as the integer points 
within a polytope described by inequalities or as integer multiples of the elements in its Hilbert 
basis. For example the polyhedral monoid illustrated in figure 6 can be described as the integer 
points within the inequalities 

                                                 -2x + 7y >= 0 

                                                     x – 3y >= 0 

       or alternatively as the non-negative integer multiples of the vectors      and           ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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      . ⎟⎟
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Although non-polyhedral monoids cannot be described as the integer points satisfying linear 
inequalities, they can always be described as the integer points satisfying inequalities involving 
Chvátal functions. The (projected) non-polyhedral monoid, also illustrated in figure 6, can be 
described as the non-negative integer multiples of 3 and 7. It can alternatively be described as the 
integer points satisfying 

                                           ┌-x/3
┐ 

+
 ┌2x/7

┐ 
<= 7 

This result is given by Ryan and Trotter [23] and Blair and Jeroslow [4]. 

In conclusion we suggest that integer monoids and Chvátal functions are fundamental structures in 
integer programming and that the subject should be extended to the problem of optimising the 
latter over the former. This could give the subject a unity which it so far lacks, by comparison with 
LP. 
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